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Abstract-A numerical investigation of the influence of buoyancy forces and thermal conductivity ratio (kJk r)
on the flow field and heat transfer around circular cylinders is presented. The flow field and energy equations
are solved under the conditions of continuity in temperature and heat flux at the fluid-solid interface. The
buoyancy forces are taken into account by applying Boussinesq's approximation. Numerical results are given
for Reynolds numbers in the range of 5", Re '" 40, buoyancy parameters in the range of -1 '" Gr/Re2

'" 2
and thermal conductivity ratios in the range of 0 '" kJkr '" CIJ.
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Greek symbols
ex thermal diffusivity of the fluid
P coefficient of volumetric expansion
II coordinate in the (~,II) coordinate system
o angle in the polar coordinate system
v kinematic viscosity
~ coordinate in the (~, II) coordinate system
~oo value of ~ at the outermost boundary
~m value of ~ at the boundary next to ~oo

p density of the fluid
qJ angle measured from the forward

stagnation point
\}J' streamfunction
\}J dimensionless streamfunction
\}J0 uniform flow solution of \}J

w' vorticity
co dimensionless vorticity

I. Il"TRODUCTIO"

HEAT transfer problems often involve a coupling of
conduction in a solid and convection in an adjacent
fluid. For situations where the buoyancy forces are of
importance, the flow field will depend on the
temperature and thereby on the ratio of the thermal
conductivities (solid to fluid). For such problems, the
flow field equations cannot be solved separately since
these equations are coupled to the energy equation
through the buoyancy forces. Further, the energy
equations for the fluid and the solid have to be solved
under the conditions of continuity in temperature and
heat flux at the fluid-solid interface.

During recent years, studies concerning coupled
conduction-convection heat transfer (or conjugate
heat transfer) have been published with increasing
frequency (e.g. ref. [1]).
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Re
T'
T'c
T'00

l"O:\IEl"CLATURE

i,j
k,
ke
Nil
Nllo
/I

Pr

I
Gr

drag coefficient
drag coefficient for forced flow
cylinder diameter or outer tube diameter
diameter of the core region or inner tube
diameter

11'/2'/3'/4 functions in the asymptotic solutions
of\}J and w

1",'/"" IT functions in the numerical solution of \}J,

wand T, respectively
arbitrary function
Grashof number, gP(T~- T'oo)D 3/v2

acceleration due to gravity
step size in the numerical calculations
heat transfer coefficient
integers
thermal conductivity of the solid
thermal conductivity of the fluid
Nusselt number, h'Dlke
Nusselt number for forced flow, kJke = 00

iteration number
Prandtl number
radial coordinate in the polar coordinate
system

R 1,R2, R3 relaxation parameters for the
streamfunction, vorticity and
temperature, respectively
Reynolds number, U ooD/v
temperature
temperature of the core region
temperature in the approaching stream at
far distances
dimensionless temperature,
(T' - T'oo)f(T~- T'oo)
velocity in the approaching stream

HMT26:9-E



1330 BEKGT SUNDEN

. . . o\fl o'¥
~ = 0 (fluid-solid Interface): a[ = &/ = 0, (8)

Thenon-dimensionalquantitiesinequations(IH4)are
related to the dimensional quantities, indicated with a
prime, as follows:

o'¥ er o'¥ et 2
a[ &/ - &/ a[ = Re Pr !1T, (3)

heat conduction in the solid

(4)

(5)

(6)

(7)

(9)

(11)

(10)

!1T= 0,

o
I] = 1--.

tt

J;on"e C:l ion = ~onductlon,

( aT ) (aT)kf - <k, - ,
a~ fluid ae . olid

~ --+ 00 : '¥ -+ exp (7t~) sin nn,

where

!1 == 02/a~2+a2/al]2.

The coordinates (~,I]) are related to the polar
coordinates (r,O) by the relations

I 2r
~ = -In-,

7t D

In terms of the non-dimensional streamfunction 'l',
vorticity wand temperature T, the governingequations
are given by

flow field

o'l' ew o'¥ ow 2 1 Gr
-----==-!1w---
a~ 131] el] ae Re 2 Re2

x 7t eXP(7te{Sin 7t(l-I]) ~~ -cos 7t(1-11) ~~l
(I)

!1lJl == - wn;2 exp (27t~), (2)

convective heat transfer in the fluid

'l' = 2\f1'/(UcoD); w = w'D/(2Uco);

T = (T' - T'oc,)/(T~ - T'oc,).

The dimensionless numbers in equations (1) and (3)are
defined as

Re = UcoD/v; Gr = gf3(T~-T'oc,)D3/V2;

Pr = v/~ = JlcJk f •

The Grashof number, Gr, is taken as positive when the
forced flow is opposite to the gravity direction and
negative when the forced flow is in the direction of the
gravity vector,

Equations (lH4) are to be solved with respect to the
following boundary conditions:

I Dc
~ .::; - In -: T = I,

n; D

The objective of the work reported below was to
predict the combined influence of the buoyancy forces
and the thermal conductivity ratio (solid to fluid) on the
flow pattern a round, and the heat transfer from, a
circular cylinder with a heated core region in low
Reynolds number flow. An infinite ratio of the thermal
conductivity of the solid to that of the fluid gives the
common case of a uniform temperature at the fluid
solid interface. The cases when the forced flow is in the
direction of the gravity acceleration vector or in the
direction opposite to it are considered, Numerical
solutions have been obtained over a range of the
Reynolds and Grashof numbers where neither the
boundary layer assumptions nor the asymptotic
matching techniques are applicable.

The forced flow field around a circular cylinder at low
Reynolds number has been given much attention in the
literature and the technique to calculate this flow field
may be considered known.

Analyses of pure forced convection from circular
cylinders at low Reynolds number have been given [2
6] while pure free or natural convection studies (for
moderate Grashof numbers) have been presented [7,
8]. Nakai and Okazaki [9] investigated both pure
forced and pure free convection. Analytical treatment
of combined natural and forced convection has only
been presented in a few papers [10, II].

Experimental results and numerical calculations
concerning mixed convection at high Reynolds and
Grashof numbers (under boundary layer assumptions)
have also been reported [12-22]. Some of these works
will be commented on later, although they are not of
direct interest for the present work. A review of works
on heat transfer of circularcylinders has been presented
by Morgan [23].

In the works quoted above the condition at the fluid
solid interface was either a uniform temperature or a
uniform heat flux.

Coupled solid body conduction-forced convection
for circular cylinders have been considered [1,24,25].

For the problem of coupled heat conduction within a
solid circular cylinder to mixed convection in a fluid,
only one set of results is available [26].

2. l\IATJlEl\IATICAL FORMULATION

Consider the 2-dim. steady flow ofan infinite stream
of an incompressible viscous fluid past a long
horizontal circular cylinder. The oncoming stream is
uniform and has the velocity Uco and temperature T 'oc,.
The cylinder with the diameter D has a heated core
region with adiameter Dc(Dc'::; D).The temperature of
the core region is T~. The thermal conductivity of the
solid material is k; and that of the fluid is k f • Heating by
viscous dissipation is neglected and the kinematic
viscosity and the coefficient of volumetric expansion
are assumed to be constants throughout the fluid . The
density of the fluid is assumed to vary with temperature
and the resulting buoyancy forces are taken into
account by applying Boussinesq's approximation.
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Equation (8)expresses the no-slip boundary condition
and equations (9) and (10) represent the conditions of
continuity in temperature and heat flux, respectively. In
equations (11)and (12) the approach to the uniform far
field conditions is expressed.

The present investigation has been performed for
Reynolds numbers in the range of 5.:;; Re .:;; 40,
-1':;; Gr/Re2

.:;; 2, De/D':;; 1 and 0':;; kJkc':;; 00,

thereby using the further assumption of symmetry
around the stagnation lines which has been shown to be
a reasonable approximation in several experiments [8,
27,28].

The present study is of interest in hot-wire
anemometry, especially at low flow velocities when the
cooling of the wire may be affected by both natural and
forced convection. In the.fieldof heat exchanger design,
the study is applicable to situations where the fluid on
the tubeside is a liquid with a very high heat transfer
coefficient so that the inside tubewall has the same
temperature as the fluid. Applications may also be
found in the rating of electrical conductors.

Boundary conditions at the fluid-solid interface
The streamfunction lJIis set equal to zero along the

fluid-solid interface in accord with equation (8). The
values of the vorticity co at the interface is calculated
from equation (2) and the condition (8).The following
second-order formula is used:

forced flow and thus fewer iterations are needed to
achieve a given convergence criterion. On the other
hand; if Gr/Re2 is negative (top to bottom problem) the
numerical values of the relaxation parameters must be
chosen smaller than those for the forced flow resulting
in a poorer convergence rate.

The relaxation parameter R3 in equation (15) is for
the convective heat transfer field depending on Re Pro
At a constant Reynolds number, R3 must be much
smaller than unity for high Pr number fluids while for
fluids with a low Pr number, values of R3 larger than
unity can be used. For the conductive heat transfer field
(within the solid) the optimal relaxation parameter for
the Laplacian equation is always applied.

ca, T~ O. (12)

)
_ 7't'(0, 11) - 8't'(h, 11) + lJI(2h,11)

W(O,ll - 21 2 •
214 I

(16)

(18)

3. NUMERICAL SOLUTION PROCEDURE

Finite difference equations
The governing equations are solved by using second

order finite difference approximations. On the (~, 11)
plane, a uniform grid with the same spacing h in both
the coordinate directions is placed. In the physical
plane, smaller meshes result near the cylinder surface
and larger ones are found far from the body.

The finite difference equations of lJI, wand Tare
solved iteratively by a relaxation technique thereby
using iterations in alternating directions. The following
principal finite-difference equations are used:

't'i,j I = (1-Rl)'t'i.i+R1f,!,(lJIi± l,i' lJIi,i± I>wi,i)' (13)

wi,; I = (1- R2)wi.i+ R2f",(lJIi±I,i' 't'i,i± I> wi±I,i'

W i.i ±I> 1;±l,i' 1;.i±I> Gr/Re2
, Re), (14)

Ti.; I = (1- R3)Ti,i+ R3fT('t'i±I.i' 't'i,i± I'

1;±I,i' 1;.i±I' Re Pr). (15)

In equations (13}-{15), II is the number of iterations and
RI, R2 and R3 the relaxation parameters. In the
functionsf'!',f", andfn the latest values of the variables
are always used. The grid notations in the 11 and ~

directions are given by i andj, respectively.
The relaxation parameters Rl and R2 are primarily

dependent on the Reynolds number Re and the ratio
Gr/Re2 (ratio of buoyancy forces to inertia forces).With
increasing Reynolds number, Rl and especially R2
must be diminished and under-relaxation is commonly
necessary. On the other hand, at a constant Reynolds
number and if the value of Gr]Re 2 is positive (i.e.if the
forced flow is opposite to the gravity vector or it is a
bottom to top problem) the relaxation parameters can
be chosen higher than those for the corresponding

The temperature distribution at the interface is found
by a direct finite difference approximation of the
conditions (9) and (to). The following second-order
formula is used:

T(-h, 11)+(kc/ks)T(h, 11) (17)
T(O,ll) = 1+(kc/k

s
) •

As is evident from equations (16)and (17), the values of
w(O, 11) and T(O, 11) are obtained as part of the numerical
solution.

Boundary conditions due to symmetry
The flow and temperature fields are assumed to be

symmetric around the stagnation lines as outlined
above. This requires the following conditions to be
satisfied:

11 = 0: a't' = 0 er
11 = 1: a~ , w = 0, &i = O.

The streamfunction is set equal to zero along the
stagnation lines according to the condition in (18)and
the interface value. A second-order approximation to
the temperature gradient condition in (18) is found by
inserting extra grid lines at '1 = - hand '1 = 1+h.

Far field boundary conditions
One major problem when dealing with the flow

around circular cylinders is the treatment of the
boundary conditions at far distances. For a practical
reason, the calculation domain must be cut off at some
finite distance from the fluid-solid interface, say
~oo = (1/14) In (2r/D)oc. An application of the uniform
stream conditions [equations (11) and (12)] at finite
distances from the cylinder surface is not so satisfactory
because of the slow decay of the flow in the wake. If
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(27)

equations (11) and (12) are applied, the drag coefficient
is found to vary largely with C;.., and thevalueis too high
when compared to experiments. Correspondingly the
temperature field becomes inaccurate. In order to
complete numerical solutions with reasonable comput
ing times but still obtaining accurate results it is
necessary to adjust the far field conditions.

Since the present investigation is dealing with steady
flows at moderate Reynolds numbers the asymptotic
expression for 'I' and w derived by Imai [29] can be
employed. In this work the first two terms in those
expressions are used, The following principal formulas
then apply:

'I'(c;oo,'I) = 'I'o(c;cx;, 1/)+coft(c;cx;, 'I, Re)+C5!2(c; 00 , 'I, Re),
(19)

w(c;oo, II)== COf3(c;oo,II,Re)+c~UC;<Xl,II,Re) (20)

where 'I' 0 is the uniform flow solution given in equation
(11).Thefunctionsfl,f2,f3 andf4can be found in ref. [1].

It is important to note that formulas (19) and (20)
depend on the drag coefficient and thus the far field
values of 'P and ware found as part of the numerical
solution.

Equations (19) and (20) have been used before [24
26, 30-32]. Parts of equations (19) and (20) have also
been used [6,33-36]. The imporlance of using proper
far field conditions was pointed out in these works.

For the temperature far field, the Oseen solution of
the energy equation (3) is applied and the following
relationship is used:

T(c;.."IJ}

T(c;m,II) =

exp {[cos n(I-II)-I](X.., -Xm)-(c;oo-c;m)n/2} (21)

where c;m is the grid line situated just inside to c;oo' X is
defined as

(~:) = O. (25)
~ {~

The expressions (23H25) are very easy to usc in the
calculations since there is no need for the drag
coefficient as in equations (19) and (20). The conditions
(23) and (24) have been found to work reasonably well
and some of the results will be commented on later.

In a study basically concerned with computation of
steady flows at high Reynolds number, Fornberg [35]
also used conditions equivalent to those in (23) and (24)
with successful and consistent results.

In the literature, mixed conditions, connecting the
functions and their first derivatives, have also been
presented [35, 36]. These methods will not be con
sidered further in this paper.

Drag and .heat transfer coefficients
The drag coefficient Cois calculated at the fluid-solid

interface and the following formula can be derived:

4 I' (ew)Co = - ---;- sin 1tI1 d'i
Re 0 a~ 0

-;: I' w(O,1/1sin 1tI1 dll

-::2 nI T(O,I/)sin 2 n(I-I/)d'l· (26)

The film heat transfer coefficient is defined with respect
to the temperature difference T~ - T'oo and for the
Nusselt number we have

2 (aT)NII=- -
n ac; ~=o'

The first derivatives in equations (26) and (27) arc
calculated with the formula

RePr
X = -4- exp(nC;). (22) (

Of ) = 4!(h,II)-f(2h,II)-3f(O,IJ}

ac; {=o 2h
(28)

The expression (21) is essentially one used previously
[1,2,6,24-26].

Modifications of both the flow and temperature far
field conditions through the equations (I9H22) have
only been considered by Sunden [1,24-26]. Apelt and
Ledwich [6] used equation (21) but did not correct the
streamfunction and only used the first term in equation
(20). This was in a study concerning heat transfer in
unsteady forced flow.

Another possible way to get proper approximations
of the far field is to assume that the derivatives of the
streamfunction, vorticity and temperature are equal to
the derivatives of the uniform flow solution. We then
have

(0'1' )~ = n exp(nC;oo)sin n(1-I/),
~ ~~

(23)

(24)

where f is either w or T. The truncation error in
equation (28) is of 0(11 2).

Concerqence and accuracy
The numerical calculations have been carried out

on IBM 370/3031 and 3033N computers in single
precision.

When the relative increases or decreases in the drag
coefficient, the local Nusselt numbers and interface
temperatures were less than 10- 5, the iterative
procedure was terminated.

In order to establish the accuracy in the numerical
solutions a number oftest calculations were performed.
These were mainly for forced convection but the
conclusions arc supposed to be valid also for combined
forced and free convection.

So for instance a careful study of the influence of the
step size was carried out. The most proper value was
found to be h = 0.02. The reasons for this choice can be
found elsewhere [1].
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By using Irnai's asymptotic solution including the
first two terms [equations (19)and (20)], the numerically
calculated results ideally should be independent of the
position of the outer boundary, that is, the value of~."

or (2r/D)~. In the present work, (2r/D)", was varied in
the range of 14-29.75and from the calculated results an
extrapolation to (2r/D)", = co was carried out. The
results so obtained were almost identical to the results
of Fornberg [35] and Dennis [36]. It was also found
that the drag coefficient calculated for (2r/D)", = 14
was 1.5% too high at Re = 20 and 3% too high at
Re = 40.

The effectof different values of~." or (2r/D)", on the
heat transfer when using equations (19)-(22) for the far
field was found to be less than 0.5%.

Ifonly the first correction terms in equations (19)and
(20)were used, the drag .coefficientfor (2r/D)", = 14 at
Re = 20 was 5.8% too high while at Re =40 the drag
coefficient was 6.8% too high.

Test calculations with the far field conditions (23)
and (24) were also carried out. Again the conditions
were applied at distances in the range of
14 ~ (2r/D)a;; ~ 29.75.At Re = 20, the drag coefficients
for (2r/D)", = 14 and (2r/D)", = 29.75 were 2.8% and
0.8%,respectively, below the true value at (2r/D)." = 00.

From these test results and the results ofFornberg [35]
it is concluded that the simple conditions (23)and (24)
are effective.

If proper far field conditions are used for the flow
field, it has been found that the condition for the
temperature field at far distances is not critical if the
interest of the heat transfer study is. focused on the
region closest to the fluid-solid interface. This might be
so because the heat transfer is primarily dominated by
wall conditions.

The results which will be presented in this paper are
those obtained for (2r/D)oo = 14 with a step size
11 = 0.02.The far fieldconditions (19)-{22)are used.The
absolute accuracy can then be estimated from what has
been stated above. Mostly however, only relative
results will be given.

4. RESULTS A!'\O DISCUSSION

All the results presented in this paper are for a
Prandtl number Pr = 0.72.

Figure 1 shows the streamlines at Re = 20, Dc/D
= 0.11 and kJkr = 4 for different strengths of the
buoyancy forces. If we take Gr/Re2 = 0 (pure forced
flow) as the standard case we can see that a positive
value of Gr/Re2 (favourable gravity effect) makes the
recirculating flow region on the backward side of the
cylinder smaller and thus the separation point is moved
towards the rear stagnation point. The wake length is
also much decreased. Above a certain positive value of
Gr/Re2 no separation occurs. On the other hand, if
Gr/Re2 is negative (adverse gravity effect) the
separation point moves towards the forward stag
nation point and the wake lengthens and the separated
region occupies more space and the streamlines are
displaced from the body. For larger negative values of
Gr/Re2 the flow region close to the cylinder surface wiII
be recirculating and the wake is extended over a major
region on the rear side.

Besides the important physical effectof the buoyancy
forces on the flow pattern also different strengths of
buoyancy forces affects the numerical procedure. It
should be pointed out that it is very difficult to obtain
fully converged solutions for large negative values of
Gr/Re2

•

In Fig. 2 the effect of the buoyancy forces on the
vorticity field is shown. At Gr/Re2 = 0 the intense
generation of vorticity on the upstream surface and its
spread downstream are clearly evident . For high
positive values of Gr/Re2

, the vorticity is confined to a
region close to the surface and high gradients on both
the upstream and downstream sides exist.This seems to
be in agreement with the appearance of a small wake or
no wake at all. For negative values of Gr/Re2 the
downstream spread of the vorticity is increased.

The influence of the thermal conductivity ratio kJkr
on the flow pattern is shown in Fig. 3 for Re = 20,
Gr/Re2 = 0.3 and DclD = 0.11. By increasing kJkr the

lV=O.5

~~lV=O .2 =

lV=O.5
~_lV-,,=Q........,2__ Gr/Re2=0.3

FIG. I. Influence of Gr/Re2 on the flow field (streamlines). Re = 20, kJk( = 4. Dc/D = 0.11.
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!k-=-0.1
Re2

CJ=-0.4

<.>=-0.1

<.>=-0.1

CJ=-Ol,

CJ=-0.1

CJ=-0.1

~<.>=w= <.>=-0.1

~_____--""1.__--'== _= _

FIG. 2. Influence of the buoyancy forces (Gr/Re 2
) on the vorticity field. Re = 20, kJkr = 4 and Dc/D = 0.11.

~ 1l'=0.5
r: ~1l'=0 ----1l'=02

~-----1jI=0.5
r: 1\1jI=0 1jI=0.2

~' =200
f_______- ~~----------1jI=0.5

/~ljI=O ------- 1l'=02

FIG.3. Influence of the thermal conductivityratio on theslreamlines. Re = 20, Gr/Re2 = 0.3 and DJD = 0.11.
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Figure 7 presents similar results to those in Figs. 5
and 6 but for a Reynolds number of Re = 40. Again CDo

is the drag coefficient for Gr/Re2 = 0 and Re = 40.

FIG. 5. Influence of the buoyancy forces (Gr/Re Z) and the '
thermal conductivity ratio (kJk r) on the drag coefficient.
Re = 20 and DJD = 0.5. a: kfk, = 200, b : k fk, = 20,

c :kJkr = 4.

Heat transfer coefficients
In Fig. 8 the influence of the buoyancy forces on the

local heat transfer coefficient is shown for Re =20,
DJD = 0.5 and kJkr = 20. Curve b is the purely forced
flowcase. A positive value of Gr/Re2 increases the local
heat transfer over the whole surface probably due to the
increased convective transport velocity close to the
surface. Negative values of Gr/Re2 on the other hand
decrease the local heat transfer over the major part of
the surface. This is so because for negative values of

Drag coefficient
In Fig. 5, the influence of the buoyancy forces and

thermal conductivity ratio on the drag coefficient is
shown for Re = 20 and DJD = 0.5 (coo is the drag
coefficient for Gr/Re2 = 0 and Re = 20). For small
values of Gr/Re2

, the influence of kJkr is weak but it is
increased with increasing values of Gr/Re2

• Again it is
found that the buoyancy forces have a stronger elfect
than the thermal conductivity ratio.

Figure 6 shows some additional results for Re = 20
and Dc/D = 0.11 but only for positive values of Gr/Re2

•

Since the insulator thickness here is greater than for the
cases in Fig. 5, the gravity effect is smaller.

Separation angle
Figure 4 shows how the separation angle Os

(measured from the rear stagnation point) is alfccted by
thebucyancyforces.Gr/Re'vat Re = 20andkJkr = 00.

At Gr/Re2 ~ 0.46 there is no separation region any
longer. For negative values of Gr/Re2

, the separation
angle is increa sed and the separated region occupies
more and more space and at a certain value of Gr/Re2

,

the flow close to the surface is fully recircul ating.
At Re = 40 and kJkr = co, the limit of Gr/Re2 for no

separation is - 0.84.

insulation of the core region becomes weaker and thus
the temperature driven force on the fluid will be
stronger and in Fig. 3 we see what happens for a
favourable gravity elfect. The wake region on the rear
side becomes smaller and smaller. IfGr]Re2 = 0 there is
no elfectof kJkron the flowpattern. For negative values
of Gr/Re2, reversed results appear with increasing kJkr•
However, as is evident when comp aring the results in
Fig. I with those in Fig. 3, the parameter Gr/Re2 has a
stronger elfect than the thermal conductivity ratio.

Aswill be seen later on, also the temperature fieldand
thus the heat transfer are alfected by Gr/Re2 and kJkr•

Calculations for several other values of the
parameters Re, Gr/Re2 and DJD than those shown in
Figs. 1-3 have also been carried out with similar and
consistent results.

e.

100

50

2.0

1.5

FIG.4. Separation angle as a function of Gr/Rez. Re = 20and
kJkr = CfJ.

2
1.0 +-,-,..,..,...-r-r-.....,r-r->-rr....,.,--.rTT-r-r-

o (jr/Rez

FIG. 6. Influence of the buoyancy forces and the thermal
conductivity ratio on the drag coefficient. R e = 20 and

DJD = OJ!. a: kJkr = 200, b: kfk, = 20, c: kJkr = 4.

o
• i ii I

-1
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FIG. 9. Influence of the buoyancy forces and the thermal
conductivity ratio on the mean heat transfer coefficient. Re
= 20andD./D = 0.5.a:kjkr = oo,b:kjkr = 20,c:kjkr = 4.

Nuo; forced convection kjkr = 00.

• • I

05 GrIRe1o
0.7 +--"........,----,----,---,-----,-.-,----,-,-

-0.5

where Nllois the Nusselt number for forced convection,
have been given by Ousthuizen and Madan [12] and
Belyakov et al. [37]. Formulas where some form of
vectorial addition of the forced and free convection are

Correlations ofthe calculated data
Correlations for determination of the average

Nusselt number under combined forced and free
convection ha ve been suggested by several authors. So
for instance, formul as of the type

Figure 11 presents results for Re = 40 and DelD
= 0.11 which are similar to and consistent with the
results given in Figs. 9 and to.

From the results in Figs.9-11 it is also clear that with
decreasing kJkf .the influence of Gr/Re2 on the mean
heat transfer coefficient is diminished.

FIG. 7. Influence of the buoyancy forces and the thermal
conductivity ratio on the drag coefficient. Re = 40 and

DJD = 0.11. a:kjkr = 200, b: kfk, = 20, c: kfk, = 4.

Gr/Re2
, the buoyancy forces counteract the forced

flow. However, in the wake region the velocity induced
by the buoyancy forces has the same direction as the
forced wake velocity and as a result the wake flow
becomes more intensive and there is an increase in the
local heat transfer.

Figure 9 shows the influence of the buoyancy forces
and the thermal conductivity ratio on the mean heat
transfer coefficient at Re = 20 and DelD = 0.5. As is
evident , the thermal conductivity ratio has a greater
effect on the mean heat transfer coefficient than on the
drag coefficient (Figs. 5-7) .

In Fig. 10 some similar results for Re = 20, DelD
= 0.11 and positive values of Gr/Re2 are given. Since
theinsulation thickness here is greater than for the cases
in Fig. 9, the heat transfer is smaller and the influence of
Gr/Re2 is weaker.

NII/NIIO = f(Gr/Re 2
) (29)
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FIG. 8. Influence of the buoyancy forces (Gr/Re 2
) on the local

heat transfer coefficient. Re = 20, DJD = 0.5 and kjkr = 20.
a : Gr/Re2 = 0.5, b: Gr/Re2 = 0, c: Gr/Re2 = -0.5.
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FIG. 10. Influence of the buoyancy forces and the thermal
conductivity ratio on the mean heat transfer coefficient. Re
= 20, DJD = 0.11. a: kJkr = 200, b: kJkr = 20, c: kJkr = 4.
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ratio when Gr/Re2 #- O. For kJkr = co the reduction in
the drag coefficient is 49% at Gr/Re2 = -1 while at
Gr/Re2 = 2 the increase in the drag coefficient is 127%.
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5. C01l\CLUSI01l\

FIG. 11. Influence of the buoyancy forces and the thermal
conductivity ratio on the mean heat transfer coefficient.
Re = 40 and DJD = 0.11. a: kJkr = 200, b: kJkr= 20,

c:kJkr = 4.

The results of the numerical solutions presented in
this paper provide new information concerning flow
and heat transfer under influence of buoyancy forces
and fluid-solid interactions (coupled solid body heat
conduction and convection in a fluid).

The heat transfer has been found to be greatly
affected by both the buoyancy forces (Gr/Re2)and the
thermal conductivity ratio (kJk r). For kJkr = 00 a
reduction of 18% in the mean heat transfer coefficient
occurred at Gr/Re2 = -1 and an increase of 24% was
found at Gr/Re2 = 2.

The flow field is primarily affected by the buoyancy
forces but also affected by the thermal conductivity

used have been presented by for instance Hatton et a/.
[15], van der Hegge Zijnen [18] and Jackson and Yen
[38]. Other empirical correlations have also been
suggested [16].

In this work, the results for the cases of a uniform
surface temperature (kJk r = 00) were correlated to an
equation of the form of(29). The reasons for this choice
were: (a) the simplicity in the structure ofsuch formulas
and (b) it is a convenient formula for engineering
calculations. With a least square fit of the calculated
data, the following formula was obtained:

Nu/Nuo = I +0. I88(Gr/Re2)

. -0.0126(Gr/Re2)2-0.01l(Gr/Re2)3. (30)

Also attempts to correlate the calculated data when
kJkr < 00 were carried out. However, no simple
formula, say Nu/Nuo = function (Gr/Rez, kJkf , Do/D),
could be found to cover all the data. Only for Gr/Re2

= 0 the effect of kJkr could be well described [39].
For the calculated drag coefficients, it was impossible

to find a simple formula which could correlate all the
data.
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INFLUENCE DES FORCES D'ARCHIMEDE ET DE LA CONDUCTIVITE THERMIQUE
SUR LE CHAMP DE VITESSE ET SUR LE TRANSFERT THERMIQUE DES CYLINDRES

CIRCULAIRES AUX FAIBLES NOMBRES DE REYNOLDS

Resume-On presente une etude nurnerique de l'influence des forces d'Archimede et du rapport de
conductivite thermique (kJkr) sur Ie champ d'ecoulernent et sur le transfert thermique autour de cylindres
circulaires. Le champ de vitesse et les equations d'energie sont resolus sous les conditions de continuite de
temperature et de flux thermique al'interface fluide-solide. Les forces d'Archirnede sont prises en compte en
appliquant l'approximation de Boussinesq. Des resultats nurneriques sont donnes pour Ie nombre de
Reynoldsdansledomaine 5.::;; Re s; 40,Ieparameremixtedansledomaine -1 .::;; Gr/Re2

.::;; 2et Ie rapport de
conductivites dans Ie domaine 0 .::;; kjkr .::;; co,

EINFLUSS VON AUFTRIEBSKRAFTEN UND WARMELEITUNG
AUF DAS STR6MUNGSFELD UND DEN WARMETRANSPORT

AN KREISZYLINDERN FOR KLEINE REYNOLDS-ZAHLEN

Zusammenfassung-Der Einflu13 der Auftriebskrafte und des Verhaltnisses der Wiirmeleitfiihigkeiten (kjkr)
aufdas Strornungsfeld und den Warmetranspon an Kreiszylindern wurde untersucht. Die Bewegungs- und
Energiegleichungen werden unter der Bedingung stetigen Temperatur- und Warmestromverlaufs an der
Grenzflache zwischen Zylinder und Fliissigkeit gelost, Die Auftriebskrafte werden durch Anwendung der
Boussinesq-Approximation beriicksichtigt. Die numerischen Ergebnisse werden fur Reynolds-Zahlen im
Bereich von 5 .::;; Re .::;; 40, die filr Auftriebsparameter im Bereich von -1 .::;; Gr/Re2

.::;; 2 und fiir Verhaltnisse
der Warrneleitfahigkeiten im Bereich von 0 .::;; kjkr .::;; W angegeben.

BJUUIHHE nOLlbEMHblX CHJI H TEnJIOnpOBOLlHOCTH HA nOJIE TE4EHHR H
TEnJIOnEPEHOC B KOJIbUEBbIX UHJIHHLlPAX nPH MAJIbIX 4HCJIAX

PElmOJIbLlCA

AHHOTallllll-npe.flCTallJleUO sucneuuoe uccrenosauue Bmlllllllll norrsexunax CILl II ornourenaa
TenJlonpOBO.flUOCTeii (k,fkr) aa none Te'teHIIlI II rennonepeuoc aoxpyr xonsueaux uannnnpoa.
Ypaauenus rnnponmrasum: II sneprun peurarorca B npennonoscemnr nenpepuanocru 'rexrrreparypsr
II TenJlOBOrO nOTOKa na rpannue paanena JKII.flKOCTb-TBep1l0e Te.10. Ilornexmue canst yxnruaarorca
B npnfinnacenuu Byccunecxa. 411c.lellllble peaym.rarur nplIBe.uellbl .fl.ll1 311a'te1ll11l xncna Pennorn.nca B
nnanaaone 5 =:;; Re =:;; 40. napaxrerpa nomesmux CII.1 B nnanasoue - I =:;; Gr]Re 2 =:;; 2 II oruourenna

rennonpoaonnocreii B rmanaaone 0 =:;; k,fkr =:;; zo:




