Int. J. Heat Mass Transfer.
Printed in Great Britain

Vol. 26, No. 9, pp. 1329-1338, 1983 0017-9310,83 $3.00 +0.00

Pergamon Press Ltd.

INFLUENCE OF BUOYANCY FORCES AND THERMAL
CONDUCTIVITY ON FLOW FIELD AND HEAT TRANSFER

OF CIRCULAR CYLINDERS AT SMALL REYNOLDS NUMBER

4]
Do
D
D,

BENGT SUNDEN

Department of Applied Thermo and Fluid Dynamics, Chalmers University of Technology,
41296 Goteborg, Sweden

(Received 26 June 1982 and in revised form 4 November 1982)

Abstract— A numerigal investigation of the influence of buoyancy forces and thermal conductivity ratio (k/k;)

on the flow field and heat transfer around circular cylinders is presented. The flow field and energy equations

are solved under the conditions of continuity in temperature and heat flux at the fluid-solid interface. The

buoyancy forces are taken into account by applying Boussinesq’s approximation. Numerical results are given

for Reynolds numbers in the range of 5 < Re < 40, buoyancy parameters in the range of —1 < Gr/Re* <2
and thermal conductivity ratios in the range of 0 < k/k; < o0.

NOMENCLATURE

drag coefficient

drag coefficient for forced flow

cylinder diameter or outer tube diameter
diameter of the core region or inner tube
diameter

J1> f2, [3, f2 functions in the asymptotic solutions

of ¥ and w

S for f7 functions in the numerical solution of 'V,

f
Gr

g

h

W

i j
k,
ke
Nu
Nu,

Pr

o and T, respectively

arbitrary function

Grashof number, gB(T,— T",,) D3/v?
acceleration due to gravity

step size in the numerical calculations
heat transfer coefficient

integers

thermal conductivity of the solid
thermal conductivity of the fluid

Nusselt number, ' D/k;

Nusselt number for forced flow, k/k; = o0
iteration number

Prandtl number

radial coordinate in the polar coordinate
system

R1,R2,R3 relaxation parameters for the

Re
TI
T:
T,
T

U

@©

HMT26:9-E

streamfunction, vorticity and
temperature, respectively

Reynolds number, U D/v

temperature

temperature of the core region
temperature in the approaching stream at
far distances

dimensionless temperature,
(T'=TIT—Ty)

velocity in the approaching stream

Greek symbols
o thermal diffusivity of the fluid
B coefficient of volumetric expansion
1 coordinate in the (£, 1) coordinate system
0 angle in the polar coordinate system
v kinematic viscosity
¢ coordinate in the (£, ) coordinate system
Ew value of £ at the outermost boundary
¢ value of ¢ at the boundary next to &,
p density of the fluid
@ angle measured from the forward
stagnation point
P streamfunction
b4 dimensionless streamfunction
Yo uniform flow solution of ¥
o vorticity
w dimensionless vorticity

1. INTRODUCTION

HEAT transfer problems often involve a coupling of
conduction in a solid and convection in an adjacent
fluid. For situations where the buoyancy forces are of
importance, the flow field will depend on the
temperature and thereby on the ratio of the thermal
conductivities (solid to fluid). For such problems, the
flow field equations cannot be solved separately since
these equations are coupled to the energy equation
through the buoyancy forces. Further, the energy
equations for the fluid and the solid have to be solved
under the conditions of continuity in temperature and
heat flux at the fluid-solid interface.

During recent years, studies concerning coupled
conduction—convection heat transfer (or conjugate
heat transfer) have been published with increasing
frequency (e.g. ref. [1]).
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The objective of the work reported below was to
predict the combined influence of the buoyancy forces
and the thermal conductivity ratio(solid to fluid) on the
flow pattern around, and the heat transfer from, a
circular cylinder with a heated core region in low
Reynolds number flow. An infinite ratio of the thermal
conductivity of the solid to that of the fluid gives the
common case of a uniform temperature at the fluid-
solid interface. The cases when the forced flow is in the
direction of the gravity acceleration vector or in the
direction opposite to it are considered. Numerical
solutions have been obtained over a range of the
Reynolds and Grashof numbers where neither the
boundary layer assumptions nor the asymptotic
matching techniques are applicable.

Theforced flow field around a circularcylinder atlow
Reynolds number has been given much attention in the
literature and the technique to calculate this flow field
may be considered known.

Analyses of pure forced convection from circular
cylinders at low Reynolds number have been given [2-
6] while pure free or natural convection studies (for
moderate Grashof numbers) have been presented [7,
8]. Nakai and Okazaki [9] investigated both pure
forced and pure free convection. Analytical treatment
of combined natural and forced convection has only
been presented in a few papers [10, 11].

Experimental results and numerical calculations
concerning mixed convection at high Reynolds and
Grashof numbers (under boundary layer assumptions)
have also been reported [12-22]. Some of these works
will be commented on later, although they are not of
direct interest for the present work. A review of works
on heat transfer of circular cylinders has been presented
by Morgan [23].

Inthe works quoted above the condition at the fluid-
solid interface was either a uniform temperature or a
uniform heat flux.

Coupled solid body conduction-forced convection
for circular cylinders have been considered [1, 24, 25].

For the problem of coupled heat conduction withina
solid circular cylinder to mixed convection in a fluid,
only one set of results is available [26].

2. MATHEMATICAL FORMULATION

Consider the 2-dim. steady flow of an infinite stream
of an incompressible viscous fluid past a long
horizontal circular cylinder. The oncoming stream is
uniform and has the velocity U, and temperature T,.
The cylinder with the diameter D has a heated core
region witha diameter D (D, < D). The temperature of
the core region is 7%. The thermal conductivity of the
solid material is k; and that of the fluid is k;. Heating by
viscous dissipation is ncglected and the kinematic
viscosity and the coefficient of volumetric expansion
are assumed to be constants throughout the fluid. The
density of the fluid is assumed to vary with temperature
and the resulting buoyancy forces are taken into
account by applying Boussinesq’s approximation.
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In terms of the non-dimensional streamfunction ¥,
vorticity w and temperature T, the governing equations
are given by

flow field
0¥ éw oY dw 2 1 Gr
0 o1 o1 8¢ Re 973 R

X7 exp(mf)[sin n(l—,,)f?% —cos n(l—,,)g_]’

()
AY = —wn? exp(2nd), ()]
convective heat transfer in the fluid
heat conduction in the solid
AT =0, 4)

where
A = 32882+ 0*/on?.

The coordinates (&,5) are related to the polar
coordinates (r, 0) by the relations

1. 2r
=~In— 5
¢ nlnD, 4
0
n=1——. 6)
7

Thenon-dimensional quantitiesinequations(1)-{4) are
related to the dimensional quantities, indicated with a
prime, as follows:

¥ = 2¥/(U,D);
T = (T'~ T )(Ti—

The dimensionless numbers in equations (1) and (3) are
deﬁn;d as

Re = U_D/v; Gr = gB(T.— T )D3v?;
Pr = vfx = pc fk.

o = «'D/(2U ,);
).

The Grashof number, Gr, is taken as positive when the
forced flow is opposite to the gravity direction and
negative when the forced flow is in the direction of the
gravity vector.

Equations (1}4) are to be solved with respect to the
following boundary conditions:

1. D
= 1 _C: =14
&g —Ino T=1 )
T
£ = 0 (fluid-solid interface): o = 2% —0, (3)
o0& Oy
'nenvcclion = ZL¢onductions (9)
oT or
ke\ — =k|—= , 10
f (aé )fluid (aé )solid ( )
E—=ow0: Y- exprf)sin ny, (11)
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w, T 0. (12)

Equation (8) expresses the no-slip boundary condition
and equations (9) and (10) represent the conditions of
continuity in temperature and heat flux, respectively. In
equations (11) and (12) the approach to the uniform far
field conditions is expressed.

The present investigation has been performed for
Reynolds numbers in the range of 5 < Re <40,
—1<Gr/fRe? <2, D/D<L1 and O<kfk < oo,
thereby using the further assumption of symmetry
around the stagnation lines which has beenshownto be
areasonable approximation in several experiments [8,
27,28].

The present study is of interest in hot-wire
anemometry, cspecially at low flow velocities when the
cooling of the wire may be affected by both natural and
forced convection. In the field of heat exchanger design,
the study is applicable to situations where the fluid on
the tubeside is a liquid with a very high heat transfer
coefficient so that the inside tubewall has the same
temperature as the fluid. Applications may also be
found in the rating of electrical conductors.

3. NUMERICAL SOLUTION PROCEDURE

Finite difference equations

The governing equations are solved by using second-
order finite difference approximations. On the (&,5)
plane, a uniform grid with the same spacing h in both
the coordinate directions is placed. In the physical
plane, smaller meshes result near the cylinder surface
and larger ones are found far from the body.

The finite difference equations of ‘¥, w and T are
solved iteratively by a relaxation technique thereby
usingiterationsin alternating directions. The following
principal finite-difference equations are used:

‘PH] =(1 —Rl)l{}:",j'l'lev(Wiix.j, LP:‘.j:t l’wi,j))
wift=( —R)w] ;4 R2Y(Wis1,5p Yijr 1o Wiz 1 pp

(13)

;e Gixr,p ’Ix:.jil’Gr/Reza Re), (14)
Ti;' = (1=R3)T};+ R (Wis 1, Wi g
Tii1,pTijr1, Re Pr). (15)

Inequations (13)}15), nis the number of iterations and
R1, R2 and R3 the relaxation parameters. In the
functions fy, f,, and f7, the latest values of the variables
are always used. The grid notations in the 5 and &
directions are given by i and j, respectively.

The relaxation parameters R1 and R2 are primarily
dependent on the Reynolds number Re and the ratio
Gr/Re? (ratio of buoyancy forces to inertia forces). With
increasing Reynolds number, R1 and especially R2
must be diminished and under-relaxation is commonly
necessary. On the other hand, at a constant Reynolds
number and if the value of Gr/Re? is positive (i.e. if the
forced flow is opposite to the gravity vector oritis a
bottom to top problem) the relaxation parameters can
be chosen higher than those for the corresponding
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forced flow and thus fewer iterations are needed to
achieve a given convergence criterion. On the other
hand, if Gr/Re? is negative (top to bottom problem) the
numerical values of the relaxation parameters must be
chosen smaller than those for the forced flow resulting
in a poorer convergence rate.

The relaxation parameter R3 in equation (15) is for
the convective heat transfer field depending on Re Pr.
At a constant Reynolds number, R3 must be much
smaller than unity for high Pr number fluids while for
fluids with a low Pr number, values of R3 larger than
unity can be used. For the conductive heat transfer field
(within the solid) the optimal relaxation parameter for
the Laplacian equation is always applied.

Boundary conditions at the fluid—solid interface

The streamfunction W is set equal to zero along the
fluid-solid interface in accord with equation (8). The
values of the vorticity w at the interface is calculated
from equation (2) and the condition (8). The following
second-order formula is used:

TY(0, 1) —8W (h,n)+ ¥ (2h, 1)
2n2h? )

w(0,7) = (16)
The temperature distribution at the interface is found
by a direct finite difference approximation of the
conditions (9} and (10). The following second-order
formula is used :

T(—h,n)+ (ke/k) T, 1)
1+(ki/ky)
Asisevident from equations (16) and (17), the values of

(0, ) and T(0, 57) are obtained as part of the numerical
solution.

TO,n) =

(17

Boundary conditions due to symmetry

The flow and temperature fields are assumed to be
symmetric around the stagnation lines as outlined
above. This requires the following conditions to be
satisfied :

n=0: o¥ T_0
n=1: 8¢ an

The streamfunction is set equal to zero along the
stagnation lines according to the condition in (18) and
the interface value. A second-order approximation to
the temperature gradient condition in (18) is found by
inserting extra grid linesaty = —hand 5y = 1+h.

=0, w=0, (18)

Far field boundary conditions

One major problem when dealing with the flow
around circular cylinders is the treatment of the
boundary conditions at far distances. For a practical
reason, the calculation domain must be cut off at some
finite distance from- the fluid-solid interface, say
¢, =(1/m)In(2r/D),. An application of the uniform
stream conditions [equations (11) and (12)] at finite
distances from the cylinder surface is not so satisfactory
because of the slow decay of the flow in the wake. If
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equations (11) and (12) are applied, the drag coefficient
isfound to vary largely with £ and the valueistoo high
when compared to experiments. Correspondingly the
temperature field becomes inaccurate. In order to
complete numerical solutions with reasonable comput-
ing times but still obtaining accurate results it is
necessary to adjust the far field conditions.

Since the present investigation is dealing with steady
flows at moderate Reynolds numbers the asymptotic
expression for ¥ and o derived by Imai [29] can be
employed. In this work the first two terms in those
expressions are used. The following principal formulas
then apply:

ly(éoo’ ”) = \yo(gw’ ’l) + CDfl(é&x:’ 1, Re) + Clz)fz(éw’ n Re)’
(19)

w(fcm ’l) :: ch3(€oc’ n, Re)+c,2,f4(§m, ", Re) (20)

where ¥, is the uniform flow solution given in equation
(11). Thefunctionsf,f>.f3andf, canbefoundinref.[1].

It is important to note that formulas (19) and (20)
depend on the drag coefficient and thus the far field
values of ¥ and w are found as part of the numerical
solution.

Equations (19) and (20) have been used before [24—
26, 30-32]. Parts of equations (19) and (20) have also
been used [6, 33-36]. The importance of using proper
far field conditions was pointed out in these works.

For the temperature far field, the Oseen solution of
the energy equation (3) is applied and the following
relationship is used :

T(Ews1) -
T 1)

exp {[cos n(l —n)—11(X o = Xp)— (o —EIn/2} (21)

where £, is the grid line situated just inside to £ .. X is
defined as

Re Pr

X= exp(né). (22)
The expression (21) is essentially one used previously
1, 2, 6,24-26].

Modifications of both the flow and temperature far
field conditions through the equations (19}+22) have
only been considered by Sundén [1, 24-26]. Apelt and
Ledwich [6] used equation (21) but did not correct the
streamfunction and only used the first term in equation
(20). This was in a study concerning heat transfer in
unsteady forced flow.

Another possible way to get proper approximations
of the far field is to assume that the derivatives of the
streamfunction, vorticity and temperature are equal to
the derivatives of the uniform flow solution. We then
have
(ﬂ) = n exp(né)sin n(l—7), (23)

E

o¢
cw
) o, 24
(ac)g,, 9
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The expressions (23)~(25) are very easy to use in the
calculations since there is no need for the drag
coefficient as in equations (19) and (20). The conditions
(23) and (24) have been found to work reasonably well
and some of the results will be commented on later.

In a study basically concerned with computation of
steady flows at high Reynolds number, Fornberg [35]
also used conditions equivalent to thosein (23) and (24)
with successful and consistent results.

In the literature, mixed conditions, connecting the
functions and their first derivatives, have also been
presented [35, 36]. These methods will not be con-
sidered further in this paper.

Drag and heat transfer coefficients
The drag coefficient ¢y, is calculated at the fluid—solid
interface and the following formula can be derived:

. 4 [ /éw o d
=— — | sin my ds
b Re 0 aé ) s ran
4 1
_r j (0, y)sin 7y dn
Re o

1
_Lr n j T(0,n)sin? n(1—p)dn.  (26)

2
Re 0

The film heat transfer coefficient is defined with respect
to the temperature difference T,— T, and for the
Nusselt number we have

2 (0T
Nu=—{— .
! ”(af);=o

The first derivatives in equations (26) and (27) are
calculated with the formula

(Qf_ _ Y Un)—SCh,n)—3/(0,1)
0 Jeo 2h

@7

(28)

where f is either w or T. The truncation error in
equation (28) is of O(h?).

Convergence and accuracy

The numerical calculations have been carried out
on IBM 370/3031 and 3033N computers in single
precision.

When the relative increases or decreases in the drag
coefficient, the local Nusselt numbers and interface
temperatures were less than 1075 the iterative
procedure was terminated.

In order to establish the accuracy in the numerical
solutions a number of test calculations were performed.
These were mainly for forced convection but the
conclusions are supposed to be valid also for combined
forced and free convection.

So for instance a careful study of the influence of the
step size was carried out. The most proper value was
found to be i = 0.02. The reasons for this choice can be
found elsewhere [1].
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By using Imai’s asymptotic solution including the
first two terms [equations (19) and (20)], the numerically
calculated results ideally should be independent of the
position of the outer boundary, that is, the value of &,
or (2r/D)... In the present work, (2r/D),, was varied in
the range of 14-29.75 and from the calculated results an
extrapolation to (2r/D),, = o was carried out. The
results so obtained were almost identical to the results
of Fornberg [35] and Dennis [36]. It was also found
that the drag coeflicient calculated for (2r/D), = 14
was 1.5% too high at Re =20 and 3% too high at
Re = 40.

The effect of different values of &, or (2r/D),, on the
heat transfer when using equations (19)—(22) for the far
field was found to be less than 0.5%,.

Ifonly the first correction termsin equations (19)and
(20) were used, the drag coefficient for (2r/D),, = 14 at
Re = 20 was 5.8% too high while at Re = 40 the drag
coefficient was 6.8% too high.

Test calculations with the far field conditions (23)
and (24) were also carried out. Again the conditions
were applied at distances in the range of
14 £ (2r/D),, < 29.75. At Re = 20, the drag coefficients
for (2r/D),, = 14 and (2r/D), = 29.75 were 2.8% and
0.8%, respectively, below the true value at(2r/D), = oo.
From these test results and the results of Fornberg [35]
it is concluded that the simple conditions {23) and (24)
are effective.

If proper far field conditions are used for the flow
field, it has been found that the condition for the
temperature field at far distances is not critical if the
interest of the heat transfer study is focused on the
region closest to the fluid—solid interface. This might be
so because the heat transfer is primarily dominated by
wall conditions.

The results which will be presented in this paper are
those obtained for (2r/D), =14 with a step size
h = 0.02. The far field conditions (19){22) are used. The
absolute accuracy can then be estimated from what has
been stated above. Mostly however, only relative
results will be given.
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4, RESULTS AND DISCUSSION

All the results presented in this paper are for a
Prandtl number Pr = 0.72.

Figure 1 shows the streamlines at Re = 20, D /D
=0.11 and kjk; =4 for different strengths of the
buoyancy forces. If we take Gr/Re? = 0 (pure forced
flow) as the standard case we can see that a positive
value of Gr/Re? (favourable gravity effect) makes the
recirculating flow region on the backward side of the
cylinder smaller and thus the separation point is moved
towards the rear stagnation point. The wake length is
also much decreased. Above a certain positive value of
Gr/Re? no scparation occurs. On the other hand, if
Gr/Re* is negative (adverse gravity effect) the
separation point moves towards the forward stag-
nation point and the wake lengthens and the separated
region occupies more space and the streamlines are
displaced from the body. For larger negative values of
Gr/Re? the flow region close to the cylinder surface will
be recirculating and the wake is extended over a major
region on the rear side.

Besides theimportant physicaleffect of the buoyancy
forces on the flow pattern also different strengths of
buoyancy forces affects the numerical procedure. It
should be pointed out that it is very difficult to obtain
fully converged solutions for large negative values of
Gr/Re?.

In Fig. 2 the effect of the buoyancy forces on the
vorticity field is shown. At Gr/Re? =0 the intense
generation of vorticity on the upstream surface and its
spread downstream are clearly evident. For high
positive values of Gr/Re?, the vorticity is confined to a
region close to the surface and high gradients on both
the upstream and downstream sides exist. This seems to
bein agreement with the appearance of a small wake or
no wake at all. For negative values of Gr/Re® the
downstream spread of the vorticity is increased.

The influence of the thermal conductivity ratio k/k;
on the flow pattern is shown in Fig. 3 for Re = 20,
Gr/Re* = 0.3 and D./D = 0.11. By increasing k./k; the

Y=(
W Gr/Re’=-0.1
A

Gr/Re?=0.0

V=0

V=05

V=02 Gr/Re?=0.3

FiG. 1. Influence of Gr/Re? on the flow field (streamlines). Re = 20, k/k; = 4, D_/D = 0.11.
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Gr _
—;--0.1

U:—0.1
g£;=03 "Ill"
e

F1G. 2. Influence of the buoyancy forces (Gr/Re?) on the vorticity field. Re = 20, k /k; = 4 and D_/D = 0.11.

A v=0 y=02

ks 200
- i O —
ﬁ(ﬂTt7§\w=o 9=02

F1G. 3. Influence of the thermal conductivity ratio on the streamlines. Re = 20, Gr/Re? = 0.3and D,/D = 0.11.
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insulation of the core region becomes weaker and thus
the temperature driven force on the fluid will be
stronger and in Fig. 3 we see what happens for a
favourable gravity effect. The wake region on the rear
side becomes smaller and smaller.If Gr/Re? = Othereis
noeffect of k /k; on the flow pattern. For negative values
of Gr/Re?, reversed results appear with increasing k /k;.
However, as is evident when comparing the results in
Fig. 1 with those in Fig. 3, the parameter Gr/Re® has a
stronger effect than the thermal conductivity ratio.

Aswill beseen later on,also the temperature field and
thus the heat transfer are affected by Gr/Re? and k k.

Calculations for several other values of the
parameters Re, Gr/Re* and D./D than those shown in
Figs. 1-3 have also been carried out with similar and
consistent results.

Separation angle

Figure 4 shows how the separation angle 0,
(measured from the rear stagnation point) is affected by
the buoyancy forces, Gr/Re?,at Re = 20and k fk; = co.
At Gr/Re? 2 0.46 there is no separation region any
longer. For negative values of Gr/Re?, the separation
angle is increased and the separated region occupies
more and more space and at a certain value of Gr/Re?,
the flow close to the surface is fully recirculating.

At Re = 40 and k/k; = co, the limit of Gr/Re? for no
separation is ~0.84.

Drag coefficient

In Fig. 5, the influence of the buoyancy forces and
thermal conductivity ratio on the drag coefficient is
shown for Re =20 and D./D = 0.5 (cp, is the drag
coefficient for Gr/Re? =0 and Re = 20). For small
values of Gr/Re?, the influence of k/k; is weak but it is
increased with increasing values of Gr/Re?. Again it is
found that the buoyancy forces have a stronger effect
than the thermal conductivity ratio.

Figure 6 shows some additional results for Re = 20
and D./D = 0.11 but only for positive values of Gr/Re?.
Since theinsulator thickness here is greater than for the
cases in Fig. 5, the gravity effect is smaller.

0

100

50 4

0 +—+—r—r——TTr T

I T
-2 -1 0 1 Gi/Re?

FIG. 4. Separation angle as a function of Gr/Re?. Re = 20and
kJky = oo.
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sE

T
2 Gr/Re?

FiG. 5. Influence of the buoyancy forces (Gr/Re?) and the-

thermal conductivity ratio (k/k;) on the drag coefficient.

Re=20 and D/D=05. a: kfk;, =200, b: kJk; =20,
c:kfke=4.

Figure 7 presents similar results to those in Figs. 5
and 6 but for a Reynolds number of Re = 40. Again ¢p,,
is the drag coefficient for Gr/Re? = 0 and Re = 40.

Heat transfer coefficients

In Fig. 8 the influence of the buoyancy forces on the
local heat transfer coefficient is shown for Re = 20,
D /D = 0.5and k/k; = 20. Curve b is the purely forced
flow case. A positive value of Gr/Re? increases the local
heat transfer over the whole surface probably due to the
increased convective transport velocity close to the
surface. Negative values of Gr/Re? on the other hand
decrease the local heat transfer over the major part of
the surface. This is so because for negative values of

G
C[’o
3

254 —_————}

4 —_———

- Ve
204 Ve

d /'/ //

i - e

4 / //
15 :

] v 7

/ Ve
4 Ve
/s
1 /7
1 /7
Z

10 e

0 1 2 Gr/Re?

FiG. 6. Influence of the buoyancy forces and the thermal
conductivity ratio on the drag coefficient. Re =20 and
D /D =0.11.a: k/k¢ =200, b: k/k; = 20, c: kfk = 4.
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05 Gr/Re?

F1G. 7. Influence of the buoyancy forces and the thermal
conductivity ratio on the drag coefficient. Re =40 and
D./D =011, a:kk,=200,b: k/k; =20, c: k/k; = 4.

Gr/Re?, the buoyancy forces counteract the forced
flow. However, in the wake region the velocity induced
by the buoyancy forces has the same direction as the
forced wake velocity and as a result the wake flow
becomes more intensive and there is an increase in the
local heat transfer.

Figure 9 shows the influence of the buoyancy forces
and the thermal conductivity ratio on the mean heat
transfer coefficient at Re = 20 and D./D = 0.5. As is
evident, the thermal conductivity ratio has a greater
effect on the mean heat transfer coefficient than on the
drag coefficient (Figs. 5-7).

In Fig. 10 some similar results for Re = 20, D./D
= (.11 and positive values of Gr/Re? are given. Since
theinsulation thickness hereis greater thanfor the cases
in Fig. 9, the heat transfer is smaller and the influence of
Gr/Re? is weaker.

=
w ~ C
T T WY S U SN DS VA -

.....

b

0 20 %0 60 8 100

20 1w %0 B0

F1G. 8. Influence of the buoyancy forces (Gr/Re?) on the local

heat transfer coefficient. Re = 20, D./D = 0.5 and k/k; = 20.
a:Gr/Re* =0.5,b: Gr/Re? = 0,c: Gr/Re? = —0.5.
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Ny
Nug

13 5

07 T T T T 7T T
- 0 1

T
2 Gt/Re?

F1G. 9. Influence of the buoyancy forces and the thermal

conductivity ratio on the mean heat transfer coefficient. Re

=20and D./D = 0.5.a:k/k; = c0,b:k/k = 20,c:k ke = 4.
Nuy; forced convection k,/k; = co.

Figure 11 presents results for Re =40 and D./D
= 0.11 which are similar to and consistent with the
results given in Figs. 9 and 10.

From the resultsin Figs.9-11 it is also clear that with
decreasing k/k; the influence of Gr/Re? on the mean
heat transfer coefficient is diminished.

Correlations of the calculated data

Correlations for determination of the average
Nusselt number under combined forced and free
convection have been suggested by several authors. So
for instance, formulas of the type

Nu/Nug = f(Gr/Re?) 29)

where Nu, is the Nusselt number for forced convection,
have been given by Ousthuizen and Madan [12] and
Belyakov et al. [37]. Formulas where some form of
vectorial addition of the forced and free convection are

Ny
Nug

10

e —
e —

05 41—
0 1 2

Gr/Re?

FiG. 10. Influence of the buoyancy forces and the thermal
conductivity ratio on the mean heat transfer coefficient. Re
=20,D/D =0.11. a: kjk; = 200, b: kJ/k; = 20, c: k/k; = 4.
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Nu
Nu,
] 3
1.0
] ‘/'/,b
L~
-
- /'/
e ——c
05+ _—
—T— T
-05 0 05 Gr/Re?

FiG. 11. Influence of the budyancy forces and the thermal
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Re=40 and D /D =0.11. a: k/fk;= 200, b: k/k, =20,
c kJjke = 4.

used have been presented by for instance Hatton et al.
[15], van der Hegge Zijnen [18] and Jackson and Yen
[38]. Other empirical correlations have also been
suggested [16].

In this work, the results for the cases of a uniform
surface temperature (k,/k; = c0) were correlated to an
equation of the form of (29). The reasons for this choice
were: (a) the simplicity in the structure of such formulas
and (b) it is a convenient formula for engineering
calculations. With a least square fit of the calculated
data, the following formula was obtained :

Nu/Nu, = 1+0.188(Gr/Re?)
| _0.0126(Gr/Re?)?—0011(Gr/Re?)?. (30)

Also attempts to correlate the calculated data when
kJks < o0 were carried out. However, no simple
formula, say Nu/Nu, = function (Gr/Re?, k/k;, D./D),
could be found to cover all the data. Only for Gr/Re?
= 0 the effect of k/k; could be well described [39].

Forthecalculated dragcoefficients, it was impossible
to find a simple formula which could correlate all the
data.

5. CONCLUSION

The results of the numerical solutions presented in
this paper provide new information concerning flow
and heat transfer under influence of buoyancy forces
and fluid-solid interactions (coupled solid body heat
conduction and convection in a fluid).

The heat transfer has been found to be greatly
affected by both the buoyancy forces (Gr/Re?) and the
thermal conductivity ratio (kJ/k;). For k/k;= 0 a
reduction of 189 in the mean heat transfer coefficient
occurred at Gr/Re? = —1 and an increase of 24%, was
found at Gr/Re® = 2.

The flow field is primarily affected by the buoyancy
forces but also affected by the thermal conductivity
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ratio when Gr/Re? s 0. For kJ/k; = oo thereductionin
the drag coefficient is 49% at Gr/Re* = —1 while at
Gr/Re? = 2 the increase in the drag coefficient is 127%,.

Acknowledgements—Financial support from the National
Swedish Board for Technical Development(STU)is gratefully
acknowledged.

REFERENCES

1. B. Sundén, Conjugated heat transfer from circular
cylinders inlow Reynolds number flow, Int. J. Heat Mass
Transfer 23, 1359-1367 (1980).

2. S. C. R. Dennis, J. D. Hudson and N. Smith, Steady
laminar forced convection from a circular cylinder at low
Reynolds numbers, Physics Fluids 11, 933-940 (1968).

3. K. M. Krall and E. R. G. Eckert, Heat transfer to a
transverse circular cylinder at low Reynolds numbers
including rarefaction effects, Proc.1Vth Int. Heat Transfer
Conf., Vol. 111, FC7.5 (1970).

4. P.C. Jain and B. S. Goel, A numerical study of unsteady
laminar forced convection from a circular cylinder, J.
Heat Transfer 98, 303-307 (1976).

5. D. Sucker and H. Brauer, Stationirer Stoff- und
Wirmelibergang an stationdr quer angestrémten
Zylindern, Wirme- und Stoffiibertragung 9, 1-12 (1976).

6. C.J. Apelt and M. A. Ledwich, Heat transfer in transient
and unsteady flows past a heated circular cylinder in the
range 1 < R < 40, J. Fluid Mech. 95, 761-777 (1979).

7. D. B. Ingham, Free-convection boundary layer on an
isothermal horizontal cylinder, J. Appl. Math. Phys. 29,
871-883 (1978).

8. T. H. Kuehn and R. J. Goldstein, Numerical solution to
Navier—Stokes equations for laminar natural convection
about a horizontal isothermal circular cylinder, Int. J.
Heat Mass Transfer 23, 971-979 (1980).

9. S.Nakaiand T. Okazaki, Heat transfer from a horizontal
circular wire at small Reynolds and Grashof numbers—1I,
Int. J. Heat Mass Transfer 18, 387-396 (1975).

10. G. A. Ohman, Numerical calculation of steady heat
transfer from a horizontal cylinder by combined free and
forced convection, Acta Polytech. Scand. Phys. Incl. Nucl.
Ser. No. 68 (1969).

11. P. C. Jain and B. L. Lohar, Unsteady mixed convection
heat transfer from a horizontal circular cylinder, J. Heat
Transfer 101, 126-131 (1979).

12. P. H. Ousthuizen and S. Madan, Combined convective
heat transfer from horizontal cylinders in air, J. Heat
Transfer 92, 194-196 (1970).

13. P. H. Ousthuizen and S. Madan, The effect of flow
direction on combined convective heat transfer from
cylinders to air, J. Heat Transfer 93, 240-242 (1971).

14, G. K. Sharma and S. P. Sukhatme, Combined free and
forced convection heat transfer from a heated tube to
transverseairstream, J. Heat Transfer 91,457-459 (1969).

15. A. P. Hatton, D. D. James and H. W. Swire, Combined
forced and natural convection with low-speed air flow
over horizontal cylinders, J. Fluid Mech.42,17-31 (1970).

16. R. M. Fand and K. K. Keswani, Combined natural and
forced convection heat transfer from horizontal cylinders
towater, Int.J. Heat Mass Transfer 16,1175-1191(1973).

17. B. Gebhart and L. Pera, Mixed convection from long
horizontal cylinders, J. Fluid Mech. 45, 49-64 (1971).

18. B. G. van der Hegge Zijnen, Modified correlation
formulae for the heat transfers by natural and by forced
convection from horizontal cylinders, Appl. Scient. Res.
A6, 129-140 (1956).

19. E. M. Sparrow and L. Lee, Analysis of mixed convection
abouta horizontal cylinder, Int.J. Heat Mass Transfer 19,
229-231 (1976).

20. J.H.Merkin, Mixed convectionfrom ahorizontal circular
cylinder, Int. J. Heat Mass Transfer 20, 73-77 (1977).



1338

2L

22.

23.

24.

25.

26.

27.

28.

29.

N.D.Joshiand S. P. Sukhatme, An analysis of combined
free and forced convection heat transfer from a horizontal
circular cylinder to a transverse flow, J. Heat Transfer 93,
441-448 (1971).

30.

BENGT SUNDEN

H. B. Keller and H. Takami, Numerical studies of steady
viscous {low about cylinders, Proc. Symp. on Numerical
Methods of Nonlinear Differential Equations, Univ. of
Wisconsin (1966).

A. Mocoglu and T. S. Chen, Analysis of combined forced ~ 31. H. Takami and H. B. Keller, Steady two-dimensional
and free convection across a horizontal cylinder, Can. J. viscous flow of an incompressible fluid past a circular
Chem. Engng 55, 265-271 (1977). cylinder, Physics Fluids Suppl. 2, 11-51-11-56 (1969).

V. T. Morgan, The overall convective heat transfer from  32. Y. Takaisi, Numerical studies of a viscous liquid past a
smoothcircular cylinders, Adv. Heat Transfer 11, 199-264 circular cylinder, Physics Fluids Suppl. 2, 1-86-11-87
(1975). (1969).

B. Sundén, A coupled conduction-convection problem at ~ 33. M. Kawaguti, Numerical solution of Navier-Stokes'
low Reynolds number flow, in Numerical Methods in equations for the flow around a circular cylinder at
Thermal Problems I, pp. 412-422. Pineridge Press Reynolds number 40, J. Phys. Soc. Japan 8, 747-757
Swansea, Wales (1979). (1953).

B.Sundén, A coupled conduction-convectionstudyinthe  34. F.Nieuwstadtand H.B.Keller, Viscous flow past circular
slip-flow regime, in Numerical Methods in Thermal cylinders, Comp. Fluids 1, 59-71 (1973).

Problems I1, pp. 1084-1095. Pineridge Press Swansea,  35. B.Fornberg, A numericalstudy of steady viscousflow past
Wales (1981). a circular cylinder, J. Fluid Mech. 98, 819-855 (1980).

B. Sundén, A numerical study of coupled conduction-  36. S.C.R.Dennis; A numericalmethod forcalculating steady
mixed convection, in Numerical Methods for Non-Linear flow past a cylinder, Proc. 5th Int. Conf. Numerical
Problems, pp. 795-805. Pineridge Press Swansea, Wales Methods in Fluid Dynamics, pp. 165-172 (1976).

(1980). 37. V. A. Belyakov, P. M. Brdlik and Yu. P. Semenov,
E. R. G. Eckert and E. Soehngen, Distribution of heat Experimentalinvestigation of mixed air convection neara
transfer coefficientsaround circular cylindersin cross flow horizontal cylinder, J. Appl. Mech. Tech. Phys. 21, 228-
at Reynolds numbers from 20 to 500, Trans. Am. Soc. 232(1980).

Mech. Engrs 74, 343-347 (1952). 38. T. W.Jackson and H. H. Yen, Combining forced and free
M. Coutanceau and R. Bouard, Experimental determi- convection equations to represent combined heat transfer
nation of the main features of the viscous flow in the wake coefficients for a horizontal cylinder, J. Heat Transfer 93,
ofacircularcylinderinuniformtranslation,J. Fluid Mech. 247-248 (1971).

79, 231-256 (1977). 39, B. Sundén, Conjugated heat transfer at low Reynolds

1. Imai, On the asymptotic behaviour of viscous fluid flow
at a great distance from a cylindrical body with special
reference to Filon’s paradox, Proc. R. Soc. A208, 487-516
(1951).

number flow around a circular cylinder, Publ. No. 78/5,
Dept. of Appl. Thermo and Fluid Dynamics, Chalmers
Univ. of Techn., Géteborg (1978).

INFLUENCE DES FORCES D’ARCHIMEDE ET DE LA CONDUCTIVITE THERMIQUE
SUR LE CHAMP DE VITESSE ET SUR LE TRANSFERT THERMIQUE DES CYLINDRES
CIRCULAIRES AUX FAIBLES NOMBRES DE REYNOLDS

Résumé—On présente une étude numérique de I'influence des forces d’Archiméde et du rapport de

conductivité thermique (k./k,) sur le champ d’écoulement et sur le transfert thermique autour de cylindres

circulaires. Le champ de vitesse et les équations d'énergie sont résolus sous les conditions de continuité de

température et de flux thermique & I'interface fluide—solide. Les forces d’Archiméde sont prises en compte en

appliquant I'approximation de Boussinesq. Des résultats numériques sont donnés pour le nombre de

Reynoldsdansle domaine 5 < Re < 40,le paramére mixte dansle domaine —1 < Gr/Re? < 2etlerapportde
conductivités dans le domaine 0 < k/k; < c0.

EINFLUSS VON AUFTRIEBSKRAFTEN UND"W..A'RMELEITUNG
AUF DAS STROMUNGSFELD UND DEN WARMETRANSPORT
AN KREISZYLINDERN FUR KLEINE REYNOLDS-ZAHLEN

Zusammenfassung—Der EinfluB der Auftriebskrifte und des Verhidltnisses der Warmeleitfahigkeiten (k k)

auf das Stromungsfeld und den Wirmetransport an Kreiszylindern wurde untersucht. Die Bewegungs- und

Energiegleichungen werden unter der Bedingung stetigen Temperatur- und Warmestromverlaufs an der

Grenzfliche zwischen Zylinder und Flissigkeit gelost. Die Auftriebskrifte werden durch Anwendung der

Boussinesq-Approximation beriicksichtigt. Die numerischen Ergebnisse werden fiir Reynolds-Zahlen im

Bereich von 5 < Re < 40, die fiir Auftriebsparameter im Bereich von — 1 < Gr/Re? < 2 und fiir Verhiltnisse
der Wirmeleitfihigkeiten im Bereich von 0 < k/k; < oo angegeben.

BJIUAHHUE NMOABLEMHLIX CHIT U TENMNONPOBOAHOCTH HA IIOJIE TEYEHHA U
TEIJIONEPEHOC B KOJIBLEBBIX UUMTHHAPAX TTPH MAJIBIX YHCIIAX
PEMHOJILACA

Ansotaumss—IIpeACTaBIeHO YHCIEHHOE MCCICNOBAHHE BIMSHHSA MOABEMHBIX CHI H  OTHOIUEHHS

TennonposoaHocreii (k/k) Ha noie TedeHHs H TEIUIONEPECHOC BOKPYT KOIIBUEBBIX LHJIHHAPOB.

YpaBHeHHS THAPOAMHAMHKH M 3HEPIrHH pEIUAIOTCA B MPEANON0XKeHH1 HEMPEPLIBHOCTH TeMNEpaTyphbl

i TEMIOBOrO MOTOKA Ha IpaHHle pa3dena KUAXOCTh-TBepaoe Te10. [ToabeMHEIE CHIB YYHTHIBAIOTCA

B npubmikennn Byccnnecka. UnciaeHHble pe3yasTaThl NpHBeJeHbl A1 3HaYeHHA yicaa PeiiHoabaca B

auanazone 5 < Re < 40, napaMerpa noabemublx C¢H1 B AHanazoHe —1 < Gr/Re? <2 w oTHoweHHA
TEILIONpPOBOAHOCTell B AnanazoHe 0 < k/kp < .





